Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1361739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504884

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%-74% and 39%-58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.

2.
J Econ Entomol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430932

RESUMEN

The utilization of yellow mealworm, Tenebrio molitor (Linnaeus, Coleoptera: Tenebrionidae), for food and feed is gaining interest globally. However, its production is hindered by expensive commercial diets. This study assessed mealworm growth performance, survival, bioconversion, and nutritional composition when fed on wheat bran (WB) with different inclusion levels (25%, 50%, 75%, and 100%) of Irish potato waste (PW). Results indicated that mealworms fed on diets with 25%-75% PW had increased body length and 1-2 times higher weight gain compared to sole WB and PW diets. The survival rate was 93%-94% across all diets. Mealworms fed on WB had a feed conversion ratio of 3.26, while the efficiency of diet conversion increased with PW inclusion levels. Mealworms fed on diets with 75% PW inclusion had the highest crude fat (48%) and energy levels (598 kcal/100 g), while sole WB produced mealworms with the highest crude protein (55%). The acid detergent fiber achieved using 100% WB was 2- to 3-fold higher, but the crude fiber and neutral detergent fiber did not vary significantly. Considerable amounts of lysine (1.6-2 mg/100 g), methionine (0.5-0.7 mg/100 g), leucine (1.4-2 mg/100 g), and threonine (0.8-1 mg/100 g) were achieved in the mealworm larvae. Our findings revealed that cheap agricultural by-products could be successfully used for the mass production of mealworms, substantially contributing to reduced production costs. Further exploration of the nutrient-dense mealworm larvae for the development of novel food and feed products is crucial.

3.
Front Plant Sci ; 15: 1343038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463573

RESUMEN

Potato production faces major challenges from inadequate soil fertility, and nematode infestation, yet synthetic fertilizers and nematicides are costly and harmful to the environment. This study explored the potential of chitin-fortified black soldier fly-composted organic fertilizer (BSFCOF) as a multipurpose organic fertilizer amendment for enhancing potato yield and suppressing potato cyst nematodes (PCN). The BSFCOF was applied at a rate equivalent to 150 kg N ha-1 and fortified with chitin from black soldier fly pupal exuviae at inclusion rates equivalent to 0.5, 1, 2, 3, 4 and 5% chitin. Data were collected on potato growth characteristics, PCN population densities, and soil chemical properties for two growing cycles. Results showed that chitin fortified BSFCOF significantly improved potato growth parameters, chlorophyll concentration, marketable tuber yield and number of marketable tubers. The marketable tuber yield achieved using chitin-fortified BSFCOF was 70 - 362%, and 69 - 238% higher than the values achieved using unfertilized soil during the first and second growing cycles, respectively. Soil amendment with chitin-fortified BSFCOF significantly reduced the number of cysts per 200 g soil-1, number of eggs and J2 per cyst-1, eggs g-1 soil and reproduction rate by 32 - 87%, 9 - 92%, 31- 98% and 31 - 98%, respectively. The PCN suppression increased with chitin inclusion rates. There were significantly higher values for soil pH, ammonium nitrogen, nitrate nitrogen, available phosphorus, calcium, magnesium, potassium, and cation exchange capacity in soil amended with BSFCOF compared to unamended soil. This study demonstrates that BSFCOF fortified with 5% chitin is an effective soil enhancer with multiple benefits, including improved soil fertility, potato performance, and effective management of potato cyst nematodes.

4.
Sci Rep ; 13(1): 18975, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923765

RESUMEN

Cabbage and Onion production in sub-Saharan Africa face numerous pest constraints that needs to be overcome to feed the rapidly growing population. This study aimed to establish the occurrence, incidence, and severity of soil-dwelling pests of cabbage and onions, and current management practices in five Counties of Kenya. Our findings revealed that most farmers grew hybrid vegetables on a small scale, which were highly dominated by various pest species (Delia platura, Maladera sp., and Agriotes sp. for cabbage and Atherigona orientalis and Urophorus humeralis for onion. The occurrence, incidence and severity of the various pest species on both crops varied considerably. Over 95% of the farmers relied on synthetic insecticides, which were applied weekly or bimonthly with limited success. Our findings demonstrate that invasive and polyphagous A. orientalis and D. platura were the most devastating pests of onion and cabbage without effective control options. Therefore, effective, sustainable, and affordable management strategies are required to control the spread of these pests to other crops in the region.


Asunto(s)
Brassica , Cebollas , Control de Insectos , Suelo , Kenia , Productos Agrícolas
5.
Sci Rep ; 13(1): 15452, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723171

RESUMEN

Recent literature highlights the potential of animal pollinator-dependent (PD) crops in enhancing food and nutrition security, although there is a lack of detailed household-level estimates. In this study, we investigate the nutrient composition, productivity, and contribution of PD and pollinator-independent (PI) crops to household nutrition in four sub-Saharan African (SSA) countries. We also evaluate the impact of reallocating resources from PI crops to PD crops on nutrient deficiencies, utilizing nationally representative panel data from three waves and over 30,000 household-year observations. Our findings reveal that PD crops exhibit higher micronutrient content per unit, albeit with lower macronutrient content compared to PI crops. PI crops have higher yield of calories per hectare while PD crops have higher vitamin A yield per hectare. However, protein and iron yield for PD and PI crops varies across countries. PI crops predominantly contribute to macronutrients and iron, while PD crops significantly contribute to vitamin A production. Our econometric results demonstrate that increasing the cultivation of PD crops relative to PI crops reduces the prevalence of nutrient deficiencies and increases crop income without compromising macronutrients production. This suggests that greater investment in PD crop production can be an integral approach to achieving nutrition security in SSA.


Asunto(s)
Dieta , Vitamina A , Animales , Nutrientes , Productos Agrícolas , Hierro , África del Sur del Sahara
6.
Data Brief ; 49: 109434, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37538953

RESUMEN

Data on the biotransfer of heavy metals along the soil-plant-edible insect-human food chain collected along a 60km pollution gradient is presented here. These datasets consists of concentrations of eight heavy metals (Arsenic, Cadmium, Copper, Chromium, Iron, Nickel, Lead and Zinc) in the soils, in five host plants species, and in seven edible insect species determined using Atomic Absorption Spectrophotometry (AAS). Datasets for the daily intake of metals and target hazard quotients for each edible insect species are also given. These data demonstrate the potential biotransfer of heavy metals along the soil-plant-edible insect-human food chain, and that edible insects harvested in heavy metal-polluted environments could pose serious health risks. These datasets provide further understanding of the relationships among metal concentrations in the soils, host plants and edible insects, particularly in the mining regions. For further details, refer to the article, "Biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa" Mwelwa et al., [1].

7.
Sci Total Environ ; 902: 166067, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544444

RESUMEN

The innovative use of insects to recycle low-value organic waste into value-added products such as food, feed and other products with a low ecological footprint has attracted rapid attention globally. The insect frass (a combination unconsumed substrate, faeces, and exuviae) contains substantial amounts of nutrients and beneficial microbes that could utilised as fertilizer. We analyse research trends and report on the production, nutrient quality, maturity and hygiene status of insect-composted organic fertilizer (ICOF) generated from different organic wastes, and their influence on soil fertility, pest and pathogen suppression, and crop productivity. Lastly, we discuss the impact of entomocomposting on greenhouse gas mitigation and provide critical analysis on the regulatory aspects of entomocomposting, and utilization and commercialisation ICOF products. This information should be critical to inform research and policy decisions aimed at developing and promoting appropriate standards and guidelines for quality production, sustainable utilization, and successful integration of entomocompost into existing fertilizer supply chains and cropping systems.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Fertilizantes/análisis , Biodegradación Ambiental , Salud Ambiental , Agricultura
8.
Sci Total Environ ; 881: 163150, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001659

RESUMEN

Although mining is Zambia's major economic activity, it is implicated in environmental contamination, particularly with heavy metals. This study investigated the accumulation and transfer of heavy metals along the soil-plant-edible insect-human food chain. Our results revealed the presence of eight heavy metals (Arsenic, Cadmium, Chromium, Copper, Iron, Nickel, Lead, and Zinc) with a 28-60 % increase in soil concentrations at the proximity of the mining facilities. There was a higher accumulation of Cd, Cu, Ni, Fe, Pb, and Zn than As and Cr in plant species near the mine. Among the insect species studied, C. forda accumulated nickel significantly higher (70-81 %), I. obscura had higher cadmium (2-84 %) and lead (10-79 %), while I. rubra and M. falciger accumulated higher iron (41-96 %) and zinc (1-67 %), respectively, than other insect species. The quantity of I. obscura consumed (248 g person-1 day-1) was significantly higher (9-37 %) than other insect species. It was noted that the consumption of insects increased the daily intake of heavy metals, enhanced the target hazard quotient, and increased the associated health risks by up to 9 folds compared to the WHO permissible limits meaning that the daily intake of metals consumed depends on the daily quantity of insects consumed. Our findings suggest that the accumulation of heavy metals along the soil-plant-edible insect-human food chain could pose severe human and environmental health risks along the mining gradients. The potential consequences of heavy metal mobility in the consumer trophic levels and the ecotoxicological consequences are particularly concerning. Furthermore, physiological and biological studies are needed to investigate the abovementioned effects.


Asunto(s)
Insectos Comestibles , Metales Pesados , Contaminantes del Suelo , Animales , Humanos , Cadmio/análisis , Níquel/análisis , Suelo , Cadena Alimentaria , Metales Pesados/análisis , Zinc/análisis , Plantas , Hierro , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Medición de Riesgo
9.
Sci Rep ; 12(1): 7182, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505193

RESUMEN

Globally, there is growing interest to recycle organic waste using insect larvae into high-quality frass fertilizer through circular economy approach. This paper presents the first comparative report on the nutrient concentrations, fertilizing indices, nutrient supply potentials and compost maturity of nine edible insect frass fertilizers. Our results revealed that frass fertilizers from all the insect species had adequate concentrations and contents of macronutrients [nitrogen (N), phosphorus (P), potassium (K)], secondary nutrients (calcium, magnesium, and sulphur) and micro-nutrients (manganese, copper, iron, zinc, boron, and sodium). The fertilizing indices of the frass fertilizers were above 3. However, black soldier fly (BSF) frass fertilizer had significantly higher N (20-130%) and K (17-193%) concentrations compared to others. The P concentration of Gryllus bimaculatus frass fertilizer was 3-800% higher compared to those of frass fertilizers from other insect species. The potential N and K supply capacities of BSF frass fertilizer was 19-78% and 16-190% higher, respectively. The P supply capacity of cricket frass fertilizer was 17-802% higher compared to others. The highest seed gemination rate (> 90%) and germination index (267%) were observed in seeds treated with BSF frass fertilizer. Frass fertilizer obtained from the other eight insect species showed medium to high phytotoxicity. These findings demonstrate that insect frass fertilizers are promising alternatives to existing commercial fertilizers (i.e., mineral, and organic) for improved soil health and crop yield.


Asunto(s)
Insectos Comestibles , Fertilizantes , Animales , Nitrógeno , Nutrientes , Fósforo
10.
Curr Opin Insect Sci ; 48: 64-71, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34649017

RESUMEN

In East Africa, insect farming is a rapidly growing business providing access to 'climate-smart' protein, other nutrients, and income. With the continental drive to transform existing food systems that are becoming continuously unsustainable due to scarcity of arable land and water, and high ecological imprint, insect farming for food and feed with circular economy potential has gained remarkable interest. In this review, we report on the recent research trends on key substrates and insect species commonly farmed, map of commercial enterprises, insect nutritional values, processing techniques, marketing, regulatory framework, and lessons learnt on insect farming. These findings provide important answers to both technical and economic factors of insect farming and provide a clear roadmap for scaling these technologies in a phased approach through effective public-private partnerships offering interesting opportunities for implementing a circular food economy.


Asunto(s)
Insectos Comestibles , Agricultura , Animales , Clima , Insectos , Valor Nutritivo
11.
Sci Rep ; 11(1): 14799, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285297

RESUMEN

Although black soldier fly frass fertilizer (BSFFF) is effective on crop performance, information on nitrogen (N) mineralization and nutrient release capacity of soils amended with BSFFF is lacking. This study utilized field incubation experiments to investigate the ammonification, nitrification, microbial populations, and quantities of nutrients released by soils amended with BSFFF and commercial organic fertilizer (SAFI) for a period equivalent to two maize cropping seasons. For the control treatment, no BSFFF or SAFI was added. Results indicated that most of the N in BSFFF amended soils was available in the ammonium form, while soils treated with SAFI had higher nitrate concentration. The BSFFF amended soils experienced shorter net immobilization periods of N (30-60 days) compared to SAFI treated soils (60-95 days). Increased rates of mineralization (3-10 times) and nitrification (2-4 times) were observed in soils treated with BSFFF during the second season of application. The BSFFF treated soils showed significantly higher N, phosphorus, and magnesium release than the control. Repeated application of BSFFF led to increased N release by three-folds in the soil. Furthermore, soil amendment with BSFFF increased the populations of bacteria and fungi, reduced soil acidity, and increased phosphorus (two-folds) and magnesium (two-four-folds) release than SAFI treated soils. Our findings highlight the crucial role of BSFFF in improving soil health by addressing the challenges of soil acidity, phosphorus fixation and nutrient mining, which is characteristic of most tropical soils.

12.
Front Plant Sci ; 12: 680312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149781

RESUMEN

Worldwide, French beans (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), and kales (Brassica oleracea L. var. acephala) are considered economically important food crops. There is a rapid decline in their yield due to severe soil degradation. Thus, high commercial fertilizer inputs are crucial, though they remain expensive and inaccessible to resource poor farmers. We investigated the comparative performance of composted black soldier fly frass fertilizer (BSFFF), conventionally composted brewer's spent grain (BSG), commercial organic fertilizer (Evergrow), and mineral [nitrogen, phosphorus, and potassium (NPK)] fertilizer on growth, yield, N use efficiency, and nutritional quality (crude protein, crude fiber, crude fats, ash, and carbohydrate concentrations) of tomatoes, kales, and French beans under greenhouse and open-field conditions for two seasons. The fertilizers were applied at rates equivalent to 371 kg of N ha-1. For each crop, the plots were treated with sole rates of BSFFF, BSG, Evergrow, and NPK to supply 100% of the N required. Additional treatments included a combination of BSFFF and NPK, and BSG and NPK so that each fertilizer supplies 50% of the N required. The control treatment consisted of unfertilized soil. Results show that vegetable yields achieved using a combination of BSFFF and NPK were 4.5, 2.4, and 5.4-folds higher than the yield from the control treatment for tomatoes, kales, and French beans, respectively. The combined application of BSFFF and NPK produced 22-135%, 20-27%, and 38-50% higher yields than sole NPK for tomatoes, kales, and French beans, respectively, under both greenhouse and open-field conditions. The highest agronomic N use efficiency was achieved in sole BSFFF-treated plots compared to sole BSG and Evergrow. The N taken up by the vegetables was significantly higher when BSFFF and NPK were integrated. Vegetables grown using a combination of BSFFF and NPK had the highest crude protein and ash concentrations. Our findings demonstrate that the integration of BSFFF and NPK in vegetable cropping systems at the recommended rate of 1.24 t ha-1 BSFFF and 322 kg ha-1 NPK would improve soil health, boost yield, and nutritional quality of vegetable crops.

13.
Waste Manag ; 119: 183-194, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068885

RESUMEN

Efforts to recycle organic waste using black soldier fly (BSF) larvae into high-quality alternative protein ingredients in animal feeds and organic fertilizers have gained momentum worldwide. However, there is limited information on waste manipulation to increase nutrient retention for enhanced larval performance and frass fertilizer quality. In the present study, brewer's spent grain with a carbon to nitrogen (C/N) ratio of 11 (control) was amended with sawdust to obtain substrates with C/N ratios of 15, 20, 25 and 30. The effects of substrate C/N ratios on BSF larval yield, waste degradation, biomass conversion efficiency, compost maturity and nutrient levels of frass fertilizer were evaluated. Substrates amended with sawdust did not significantly affect waste degradation efficiency and biomass conversion rates of BSF larvae. The wet and dried larval yields were significantly higher for substrates with C/N ratio of 15 compared to the other amended substrates. An amended substrate with C/N ratio of 15 enhanced nutrients uptake by BSF larvae, and increased nitrogen (N) and phosphorus retention in frass compost by 21 and 15%, respectively. Compost maturation time was shortened to five weeks, as indicated by the stable C/N ratios and high seed germination indices. This study has demonstrated that the amendment of the substrate with sawdust to C/N ratio of 15 could generate compost with desirable nutrients for use as high-quality fertilizer for organic farming.


Asunto(s)
Simuliidae , Animales , Fertilizantes , Residuos Industriales , Larva , Nutrientes , Tecnología
14.
Front Plant Sci ; 11: 574592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072150

RESUMEN

Black soldier fly frass fertilizer (BSFFF) is increasingly gaining momentum worldwide as organic fertilizer. However, research on its performance on crop production remains largely unknown. Here, we evaluate the comparative performance of BSFFF and commercial organic fertilizer (SAFI) on maize (H513) production. Both fertilizers were applied at the rates of 0, 2.5, 5, and 7.5 t ha-1, and 0, 30, 60, and 100 kg nitrogen (N) ha-1. Mineral fertilizer (urea) was also applied at 0, 30, 60 and 100 kg N ha-1 to establish the N fertilizer equivalence (NFE) of the organic fertilizers. Maize grown in plots treated with BSFFF had the tallest plants and highest chlorophyll concentrations. Plots treated with 7.5 t ha-1 of BSFFF had 14% higher grain yields than plots treated with a similar rate of SAFI. There was a 27% and 7% increase in grain yields in plots treated with 100 kg N ha-1 of BSFFF compared to those treated with equivalent rates of SAFI and urea fertilizers, respectively. Application of BSFFF at 7.5 t ha-1 significantly increased N uptake by up to 23% compared to the equivalent rate of SAFI. Likewise, application of BSFFF at 100 kg N ha-1 increased maize N uptake by 76% and 29% compared to SAFI and urea, respectively. Maize treated with BSFFF at 2.5 t ha-1 and 30 kg N ha-1 had higher nitrogen recovery efficiencies compared to equivalent rates of SAFI. The agronomic N use efficiency (AEN) of maize treated with 2.5 t ha-1 of BSFFF was 2.4 times higher than the value achieved using an equivalent rate of SAFI. Also, the AEN of maize grown using 30 kg N ha-1 was 27% and 116% higher than the values obtained using equivalent rates of SAFI and urea fertilizers, respectively. The NFE of BSFFF (108%) was 2.5 times higher than that of SAFI. Application rates of 2.5 t ha-1 and 30 kg N ha-1 of BSFFF were found to be effective in improving maize yield, while double rates of SAFI were required. Our findings demonstrate that BSFFF is a promising and sustainable alternative to commercial fertilizers for increased maize production.

15.
PLoS One ; 15(8): e0238154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32853236

RESUMEN

Black soldier fly (BSF) (Hermetia illucens L.) is one of the most efficient bio-waste recyclers. Although, waste substrate amendments with biochar or gypsum during composting process are known to enhance nutrient retention, their impact on agro-industrial waste have not been documented. Hence, this study focuses on a comparative effect of agro-industrial waste amended with biochar and gypsum on BSF larval performance, waste degradation, and nitrogen (N) and potassium retention in frass fertilizer. Brewery spent grain was amended with biochar or gypsum at 0, 5, 10, 15 and 20% to determine the most effective rates of inclusion. Amending feedstock with 20% biochar significantly increased wet (89%) and dried (86%) larval yields than the control (unamended feedstock). However, amendment with 15% gypsum caused decrease in wet (34%) and dried (30%) larval yields but conserved the highest amount of N in frass. Furthermore, the inclusion of 20% biochar recorded the highest frass fertilizer yield and gave a 21% increase in N retention in frass fertilizer, while biomass conversion rate was increased by 195% compared to the control. Feedstock amendment with 5% biochar had the highest waste degradation efficiency. Potassium content in frass fertilizer was also significantly enhanced with biochar amendment. At maturity, frass compost with more than 10% inclusion rate of biochar had the highest cabbage seed germination indices (>100%). The findings of this study revealed that initial composting of biochar amended feedstocks using BSF larvae can significantly shorten compost maturity time to 5 weeks with enhanced nutrient recycling compared to the conventional composting methods.


Asunto(s)
Carbón Orgánico/química , Larva/crecimiento & desarrollo , Simuliidae/crecimiento & desarrollo , Animales , Biomasa , Compostaje/métodos , Fertilizantes , Residuos Industriales , Nitrógeno/química , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...